Rolls-Royce safety I&C supports licenseability

of VVER new construction and modernization

Jana Kubínová – I&C Customer Business Manager

VVER 2016, Prague 31 October 2016

© 2014 Rolls-Royce Civil Nuclear SAS

The information in this document is the property of Rolls-Royce Civil Nuclear SAS and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of Rolls-Royce Civil Nuclear SAS.

This information is given in good faith based upon the latest information available to Rolls-Royce Civil Nuclear SAS, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce Civil Nuclear SAS or any of its subsidiary or associated companies.

Trusted to deliver excellence

Our market has changed Safety I&C is a major focus of Safety Authorities and can lead to significant cost overruns

- I&C represents « only » 8 to 10% of the NPP cost and safety I&C a fraction of it
- Challenges faced by some utilities, reactor vendors and I&C suppliers in receiving the local Safety Authority's approval has led to large delays and cost overruns with major financial and reputational impacts

We rely on a long history of on-time delivery of large I&C projects VVER reactors

On-going...

- HANHIKIVI-1 Conceptual design phase for safety I&C
- MOCHOVCE 3&4 Neutron instrumentation system
- LOVIISA 1&2 I&C modernization

The key sucess factors:

- An early Conceptual Design Phase
- Collaboration among all stakeholders
- Simple and flexible design
 - Strong processes

... and previous major I&C projects

- 4 x VVER Dukovany, whole Protection System modernization
- 2 x RBMK Ignalina, Diverse Reactor Trip
- 2 x VVER Metsamor, Neutron Flux Monitoring
- 2 x VVER Kozloduy, Neutron Flux Monitoring
- o 3 x VVER Balakovo and Kalinin, upper level modernisation

Cutting edge technology remains a MUST

Rolls-Royce sponsoring the British project, to create a car that can reach up to the supersonic speed of 1,000 Mph with Rolls-Royce engine.

Particularly in I&C:

computer and the

CPU used now

You may compare the size of the first digital

CPU, 2016

Cutting edge technology remains a MUST

Our Spinline digital safety I&C technology is in permanent evolution

We rely on SpinlineTM a validated safety I&C technology by Safety Authorities worldwide

Beyond technology: Design flexibilityThe Reference Plant's I&C design only is not sufficient

I&C Architecture needs to be adapted to each application instead of imposing a standard solution:

- Based on the Defense in Depth and Diversity needs
- With due defense against Common-cause Failure, utilizing diversity, redundancy and independence

Gradual shift in Regulations and Standards:

- From focusing on individual pieces of **equipment** to rather focusing on the **system (or overall architecture)** as a whole (systems engineering approach)
- From being prescriptive about technical features to becoming rather prescriptive about the process that one has to follow

Still subject to interpretation by the Safety Authority

Upfront collaborative phase:

Key success factor for a successful I&C licensing vs. tendering the Reference Plant's main I&C package

From our experience, it is necessary to set up a Preproject "Conceptual Design Phase" for the I&C important to safety

Goals of this collaborative initiative are:

- Agree interpretation of requirements from country-specific guides, WENRA, Owner, Plant Designer and translate into I&C language
- Define the overall I&C Architecture based on requirements
- Allocate functions and requirements to I&C systems
- Allocate systems to platforms to check technology and economic feasibility
- Get early review from the Safety Authority on main principles

This will reduce the licensing risk and provide design optimization of the overall I&C

Our Finnish reference - Loviisa 1,2 modernisation

VVER Designs Evolution (4)

Evolutionary approach in Hanhikivi-1 NPP design

☐ Each modern NPP design ever is something new and deferent from other previous

IAEA, St. Petersburg, 30.06.2015

Proposed implementation of « Evolutionary Approach in Hanhikivi-1 NPP Design » to Defense in Depth, Independence and Diversity concept

- 2. Elaborate precise and (only) necessary independence requirements
- 3. Application to the Atomproekt's Defense in Depth concept.
- 4. Allocation of Task Categories to « I&C Architectures » and « I&C Systems » and identification of differences between ADLAS Reqs and Reference VVER I&C Architecture
- 5. Elaborate Overall I&C Architecture

Collect input from ADLAS

Hanhikivi-1 Task Categories Allocation – selected example

Hanhikivi-1 Preliminary Architecture – Core Safety I&C Systems

A Product Lifecycle Management (PLM) approach

The process of managing product-related design, production and maintenance information

Rolls-Royce 60 years I&C lifecycle support

Assurance of long term operation through long term delivery of technical assistance, compatible spare parts, and repair services

Unit 3: 1985

Unit 4: 1986

- Strong projects execution experience acquired with largest Utilities, NSSS vendors, NPP Designers
- We will continue to maintain and develop our strong licensing and qualification skills in stringent regulatory environment
- An existing proven technologies that we continuously improve and reinforce along the projects
- Establish local partnerships for the project delivery, and geographical proximity with the End-user through services local presence

